ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
Meyer Steinberg, James R. Powell, Hiroshi Takahashi
Nuclear Technology | Volume 58 | Number 3 | September 1982 | Pages 437-446
Technical Paper | Fuel Cycle | doi.org/10.13182/NT82-A32979
Articles are hosted by Taylor and Francis Online.
Received October 9, 1981 Accepted for Publication March 18, 1982 The development of a nuclear fission fuel cycle is proposed that eliminates all the radioactive fission product (FP) waste effluent and the need for geological age high-level waste storage and provides a longterm supply of fissile fuel for a light water reactor (LWR) economy. The fuel cycle consists of reprocessing LWR spent fuel (1 to 2 yr old) to remove the stable nonradioactive FPs (NRFPs) (e.g., lanthanides, etc.) and short-lived FPs (SLFP) (e.g., half-lives of <1 to 2 yr) and returning, in dilute form, the long-lived FPs (LLFPs) (e.g., 30-yr half-life cesium and strontium, 10-yr krypton, and 16 X106-yr iodine) and the transuranics (TUs) (e.g., plutonium, americium, curium, and neptunium) to be refabricated into fresh fuel elements. Makeup fertile and fissile fuel (FF) are to be supplied through the use of the spallator (linear accelerator spallation-target fuel producer). The reprocessing of LWR fuel elements is to be performed by means of the chelox process, which consists of chopping and leaching with an organic chelating reagent (β-diketonate) and distillation of the organo-metallic compounds formed for purposes of separating and partitioning the FPs. The stable NRFPs and SLFPs are allowed to decay to background in 10 to 20 yr for final disposal to the environment. The fertile material (FM) (e.g., 238U) and TUs are returned to be reincorporated into LWR fuel elements. The even mass-numbered TUs are efficiently converted to odd mass-numbered FF in the reactor, which then fissions to produce thermal energy and FPs in the LWR. The TUs have high thermal neutron cross sections and are therefore efficiently converted in the thermal LWR. The LLFPs (e.g., cesium, strontium, krypton, and iodine) are recycled in the fuel cycle to decay and become transmuted both in the spallator and the LWR to SLFP and stable NRFP products. Decay is the major mode of transmutation of the LLFPs because of their small thermal neutron cross sections. Some neutron transmutation does occur and shortens the storage times for the LLFPs. In this manner, long-term geological age storage of FP waste is avoided and the need for a new fast breeder reactor economy is no longer a necessity by the utility power industry. The APEX fuel cycle can be beneficially applied to the Th/233U cycle as well as the described U/239Pu cycle. A number of development efforts will be required to bring this system into production; however, no new basic scientific or technical proof-of-principle is needed.