ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
Ronald J. Lipinski, John E. Gronager, Michel Schwarz
Nuclear Technology | Volume 58 | Number 3 | September 1982 | Pages 369-378
Technical Paper | Fission Reactor | doi.org/10.13182/NT82-A32972
Articles are hosted by Taylor and Francis Online.
Received November 3, 1981 Accepted for Publication Feburary 24, 1982 The results of a fission-heated sodium-U02 particle bed heat removal experiment (D-4) are presented and the effects of cooling the overlying sodium below saturation are discussed. Single-phase convection began at a Rayleigh number an order of magnitude smaller than for water. Bed disturbances were observed to occur at the onset of boiling, but only after a previous boiling cycle. The disturbances are believed to be due to the flashing of superheated liquid sodium after noncondensable gases had been removed during a previous boiling cycle. The start of bed dryout was observed with two different overlying sodium temperatures (300 and 600°C). The dryout power was 0.77 kW/kg with 300°C overlying sodium (and 29 kPa pressure) and 3.58 kW/kg with 600°C sodium (and 43 kPa). It is believed that cold overlying sodium reduces the large heat-removal capability of shallow beds by causing vapor condensation within the bed and suppressing channel formation. Steady-state temperatures above the boiling temperature were observed at the bed bottom for several power levels above the incipient dryout power, indicating stable dry zones.