ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
Hubertus Nickel, Philip J. Ennis, Florian Schubert, Hans Schuster
Nuclear Technology | Volume 58 | Number 1 | July 1982 | Pages 90-106
Technical Paper | Material | doi.org/10.13182/NT82-A32962
Articles are hosted by Taylor and Francis Online.
As in conventional high temperature technology, the qualification of metallic materials for high temperature reactor (HTR) applications is based on creep behavior, fatigue properties, corrosion resistance, and thermal stability. Of specific interest are the effects of the primary coolant helium, which contains trace impurities of hydrogen, methane, carbon monoxide, and water vapor, on mechanical behavior. In addition, irradiation effects on the properties of absorber rod cladding and tritium permeation from the primary coolant into the process gas are important areas for investigation. The results show that, for test times of up to 20 000 h, the creep-rupture strength in air and in HTR helium lies in the same scatter band. The results of low cycle fatigue tests indicate a beneficial effect of HTR helium on the cycles of failure. Investigations of corrosion in HTR helium have shown that acceptable corrosion resistance can be achieved by strict control of the impurity content of the helium. Using the available creep-rupture data and the linear damage accumulation rule, the acceptable service lives of intermediate heat exchanger tubes were calculated for Inconel alloy 617 at 950°C. The data that are being accumulated from the various test programs will form the basis of a design code for nuclear components operating at temperatures >800 °C.