ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Siegfried Malang, Klaus Rust
Nuclear Technology | Volume 58 | Number 1 | July 1982 | Pages 53-62
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT82-A32957
Articles are hosted by Taylor and Francis Online.
For the investigation of thermohydraulic behavior during loss-of-coolant accidents (LOCAs), the nuclear fuel rods are simulated, in out-of-pile experiments, by electrically heated rods. These heater rods are required to produce temperature and heat flux histories at each position of the heater rod surface, identical to those of the nuclear fuel rods. Generally, these requirements are approximated by preprogramming of the transient heater rod power using estimated cooling conditions. However, the cooling conditions are not known very accurately prior to a test since the investigation of the thermohydraulics is the main purpose of the test. The use of an on-line process computer that controls the power of the heater rod by feedback of the measured cladding temperature to simulate, more closely, a LOCA has been suggested. A computer code simulating experiments in which the heater rod power is controlled by an on-line computer has been developed for checking and has demonstrated the validity of the method. In addition, the method has been confirmed by experiments performed at the Semiscale Test Facility.