ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Folkmar A. Schwarz, Heinz E. Tischer, Ronald N. Drake, William S. Rickman, Nadine D. Holder, James B. Strand
Nuclear Technology | Volume 58 | Number 1 | July 1982 | Pages 29-35
Technical Paper | Fuel Cycle | doi.org/10.13182/NT82-A32954
Articles are hosted by Taylor and Francis Online.
For several years, the United States and the Federal Republic of Germany (FRG) have engaged in a successful cooperative program to develop high temperature gas-cooled reactor (HTGR) fuel cycle technology. Recent tests in reprocessing pilot plant facilities at General Atomic Company have demonstrated the feasibility of performing HTGR head-end unit operations for both spherical (German) and block-type (American) fuel elements in a single process line. Because of an unexpected high fines generation and elutriation rate, extended fluidized bed primary burning of FRG fuel material was impossible to accomplish with the burner system and operating procedures optimized for U.S. fuel burning. Operational modification, including startup with a carbon-poor bed and reduction of the fluid-izing velocity, resulted in dramatic improvements in FRG fuel-burning behavior and allowed extended processing campaigns. Additional modifications to the fines recycle system and burner are recommended to optimize the system for processing of FRG fuels.