ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
Folkmar A. Schwarz, Heinz E. Tischer, Ronald N. Drake, William S. Rickman, Nadine D. Holder, James B. Strand
Nuclear Technology | Volume 58 | Number 1 | July 1982 | Pages 29-35
Technical Paper | Fuel Cycle | doi.org/10.13182/NT82-A32954
Articles are hosted by Taylor and Francis Online.
For several years, the United States and the Federal Republic of Germany (FRG) have engaged in a successful cooperative program to develop high temperature gas-cooled reactor (HTGR) fuel cycle technology. Recent tests in reprocessing pilot plant facilities at General Atomic Company have demonstrated the feasibility of performing HTGR head-end unit operations for both spherical (German) and block-type (American) fuel elements in a single process line. Because of an unexpected high fines generation and elutriation rate, extended fluidized bed primary burning of FRG fuel material was impossible to accomplish with the burner system and operating procedures optimized for U.S. fuel burning. Operational modification, including startup with a carbon-poor bed and reduction of the fluid-izing velocity, resulted in dramatic improvements in FRG fuel-burning behavior and allowed extended processing campaigns. Additional modifications to the fines recycle system and burner are recommended to optimize the system for processing of FRG fuels.