ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Soon-Joon Hong, Jae-Hak Kim, Yong-Soo Kim, Goon-Cherl Park
Nuclear Technology | Volume 138 | Number 3 | June 2002 | Pages 273-283
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT02-A3294
Articles are hosted by Taylor and Francis Online.
This paper discusses a thermal-hydraulic analysis methodology using RETRAN-3D and assembles system analyses for pressurized thermal shock resulting from a steam generator tube rupture accident in Kori Nuclear Unit 1. Through a systematic definition of sequences and thermal-hydraulic analyses using RETRAN-3D, the most important parameters on downcomer overcooling were identified. The break location that leads to the most significant overcooling was found to be the hot leg side in the loop that does not contain the charging flow inlet. The initial power level had a large effect on the downcomer overcooling. The closure failure of the pressurizer power operated relief valves and the termination failure of the safety injection were found to be the most significant operator actions. In contrast, auxiliary feedwater control failure had little effect on overcooling, and the steam dump valve closure failure merely resulted in a temperature rise in the latter half of the transient. Through these analyses, recommendations for sequence grouping and against downcomer overcooling are provided.