ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Hiroshi Tochihara, Eiji Ochiai, Tadashi Hasegawa
Nuclear Technology | Volume 58 | Number 2 | August 1982 | Pages 310-317
Technical Paper | Analyse | doi.org/10.13182/NT82-A32939
Articles are hosted by Taylor and Francis Online.
The ex-core detector response in pressurized water reactors (PWRs) depends on not only power level but also core power distribution. Therefore, it is important to precisely calculate the assembly-wise spatial weighting factors for the ex-core detectors. Usually these factors are calculated with the one-dimensional transport code and point kernel calculational method, in which the neutron scattering effect outside of reactor vessel is neglected. But when the scattering effect is estimated to be rather big, we calculate the assembly-wise spatial weighting factors using the two-dimensional transport code, which includes the scattering effect. Consequently, we found that the weighting factors of peripheral assemblies that are remote from the detector but close to reactor vessel are rather big in comparison with the previous results. When we calculate the detector response during one control rod insertion test of three-loop PWR core using these weighting factors, the agreement between calculation and measurement is very good. A simple point kernel calculational method developed instead of the two-dimensional transport calculation that consumes much computer time.