ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
James P. Adams, Victor T. Berta
Nuclear Technology | Volume 58 | Number 2 | August 1982 | Pages 294-309
Technical Paper | Material | doi.org/10.13182/NT82-A32938
Articles are hosted by Taylor and Francis Online.
Self-powered neutron detectors (SPNDs) with cobalt emitters exhibited sensitivity to water density variations in the loss-of-fluid test large break transient simulations. Definite correlations were determined for both depressurization (decreasing water inventory) and core reflood (increasing water inventory) phases of the transients. The SPNDs were positioned in a radial array at the elevation corresponding to the maximum power in the core. The pre-experiment steady-state power density at the detector locations varied from a maximum of 39.3 kW/m (12.0 kW/ft) to a minimum value of 17.4 kW/m (5.3 kW/ft), inclusive of all locations and transient simulations. All of the SPND data exhibited good correlation to water density variations over this range of initial power densities. Water density fluctuations were measured by the SPNDs throughout these transients, and the fluctuations associated with the early corewide rewet and the gravity reflood flow oscillations are addressed in detail. Analytical investigation of the response of these detectors to water density variations long after reactor shutdown indicates that these detectors will remain sufficiently sensitive to have application in reactor vessel liquid level measurement in small break pressurized water reactor transients.