ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Yun Long, Yi Yuan, Mujid S. Kazimi, Ronald G. Ballinger, Edward E. Pilat
Nuclear Technology | Volume 138 | Number 3 | June 2002 | Pages 260-272
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT02-A3293
Articles are hosted by Taylor and Francis Online.
Fission gas release in thoria-urania fuel has been investigated by creating a specially modified FRAPCON-3 code. Because of the reduced buildup of 239Pu and a flatter distribution of 233U, the new model THUPS (Thoria-Urania Power Shape) was developed to calculate the radial power distribution, including the effects of both plutonium and 233U. Additionally, a new porosity model for the rim region was introduced at high burnup. The mechanisms of fission gas release in ThO2-UO2 fuel are expected to be essentially similar to those of UO2 fuel; therefore, the general formulations of the existing fission gas release models in FRAPCON-3 were retained. However, the gas diffusion coefficient was adjusted to a lower level to account for the smaller observed release fraction in the thoria-based fuel. To model the accelerated fission gas release at high burnup properly, a new athermal fission gas release model was introduced. The modified version of FRAPCON-3 was calibrated using the measured fission gas release data from the light water breeder reactor. Using the new model to calculate the gas release in typical pressurized water reactor hot pins gives data that indicate that the ThO2-UO2 fuel will have considerably lower fission gas release above a burnup of 50 MWd/kg HM.