ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NEI chief executive highlights “unlimited potential” for nuclear in state of the industry address
Korsnick
In the Nuclear Energy Institute’s annual State of the Nuclear Energy Industry report, NEI president and CEO and Maria Korsnick expressed optimism about the nuclear industry and she issued a call to action.
Her address was part of NEI’s Nuclear Energy Policy forum. The forum, being held in Washington, D.C., on May 20 and May 21, brings together industry leaders, policy stakeholders, and clean energy experts to discuss nuclear advocacy. Korsnick’s remarks focused on the private capital flowing into the industry, progress on regulatory reform and new nuclear technology, and how the U.S. is trying to take the lead on the global nuclear stage.
“We are here at an unprecedented time in our industry history,” Korsnick said. “I’m proud to say that the nuclear industry has a future of unlimited potential.”
Sridhar Komarneni, Rustum Roy
Nuclear Technology | Volume 56 | Number 3 | March 1982 | Pages 575-579
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT82-A32916
Articles are hosted by Taylor and Francis Online.
The following potential backfill materials have been studied: phillipsite, clinoptilolite, mordenite, montmorillonites, vermiculites, chlorite, kaolinite, labradorite, and shales. Each of these was hydrothermally reacted with Cs2MoO4, a possible cesium phase in spent fuel elements, in the presence of a bittern brine at 200°C for two months under a confining pressure of 300 bars. Analyses of the product solutions indicated that montmorillonites, vermiculites, and zeolites fixed (as determined by resistance to K+ washing) the greatest fractions of the added cesium while other minerals, labradorite, and shales fixed only about 10% of the added cesium. For example, montmorillonite from Arizona and phillipsite from California fixed 47 and 50%, respectively, of the cesium added. X-ray diffraction analysis of the solid products revealed that cesium was fixed in the interlayers of montmorillonite as indicated by the collapse of the c-spacing from 15.5 to 12.1 A. Cesium interaction with clinoptilolite and mordenite zeolites did not result in their alteration or in any new cesium minerals as observed by x-ray diffraction. The cesium aluminosilicate mineral, pollucite, was detected only with phillipsite-cesium interactions in brine unlike in the hydrothermal interaction of these materials with Cs2MoO4 in deionized water where the presence of pollucite was found earlier to be pervasive. Powellite, CaMoO4, was the only new phase found in all these interactions by x-ray diffraction which resulted from the combination of calcium from brine with molybdenum from Cs2MoO4. Montmorillonites among clay minerals and zeolites such as clinoptilolite and mordenite seem to be the best backfill materials in salt based on these studies and based on our earlier studies of mineral stability under repository conditions.