ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
D. D. Lanning
Nuclear Technology | Volume 56 | Number 3 | March 1982 | Pages 565-574
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT82-A32915
Articles are hosted by Taylor and Francis Online.
Thermally induced cracking of the UO2 fuel pellets undoubtedly results in some reduction of the effective fuel thermal conductivity, relative to that for solid UO2. This effect may be approximated by appropriately chosen “crack factors” that reduce the solid-UO2 thermal conductivity. We demonstrate that the assumption of reduced fuel conductivity always results in a reduction of the fuel stored energy that is inferred from fuel centerline temperature data. This reduction occurs whether the crack factors are introduced as simple constants or as functions of radial position within the fuel pellet. If fuel performance computer codes remain “tuned” to the current body of centerline temperature data, those codes will predict lower fuel stored energy when fuel cracking is taken into account regardless of the modeling assumptions invoked. Accounting for fuel cracking should lead to a reduction in calculated peak cladding temperatures obtained in some loss-of-coolant accident simulations.