ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NEI chief executive highlights “unlimited potential” for nuclear in state of the industry address
Korsnick
In the Nuclear Energy Institute’s annual State of the Nuclear Energy Industry report, NEI president and CEO and Maria Korsnick expressed optimism about the nuclear industry and she issued a call to action.
Her address was part of NEI’s Nuclear Energy Policy forum. The forum, being held in Washington, D.C., on May 20 and May 21, brings together industry leaders, policy stakeholders, and clean energy experts to discuss nuclear advocacy. Korsnick’s remarks focused on the private capital flowing into the industry, progress on regulatory reform and new nuclear technology, and how the U.S. is trying to take the lead on the global nuclear stage.
“We are here at an unprecedented time in our industry history,” Korsnick said. “I’m proud to say that the nuclear industry has a future of unlimited potential.”
C. C. Lee, R. A. Karam
Nuclear Technology | Volume 56 | Number 3 | March 1982 | Pages 535-546
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT82-A32912
Articles are hosted by Taylor and Francis Online.
Optimized breeding performances of three breeder strategies are compared. The first strategy is the normal mixed plutonium-uranium oxide fuel cycle, which is used as a reference case. The second is based on the use of the light water reactor generated plutonium in interim Pu-Th (metallic fuel) breeders cooled with sodium to build up 233U inventory for use in liquid-metal fast breeder reactors fueled with metallic 233U-Th. The third is based on a combination cycle involving two reactor types, Pu-Th and 233U-238U, both using metallic fuel and sodium as a coolant. These reactors will operate simultaneously; the excess 233U generated in the Pu-Th reactors is used to fuel the 233U-238U reactors and the plutonium generated in the 233U-238U reactors is used to fuel the Pu-Th reactors. The combination cycle has obvious antiproliferation characteristics. The breeding performance as measured by optimized compound system doubling time for nominal 1000-MW(electric) systems was 8.8 years for the combination system of Pu-Th and 233U-238U reactors 31.4 years for the 233U-Th reactor, and 14 years for the (Pu-U)O2 reactor. The corresponding optimum fuel pin diameters were 0.30, 0.37, and 0.28 in., respectively. The Δk/k change associated with the removal of all the sodium from the inner core (inner to outer core volume ratio is 60:40) was +0.03, +1.01, +1.23, and +2.60% for the 233U-Th, 233U-238U, Pu-Th, and (Pu-U)O2 reactors, respectively. Preliminary calculations indicate that it is possible to design the 233U-238U reactors to operate on an extended cycle such that once the reactor is built, it only needs natural uranium as feed fuel for the rest of the lifetime of the reactor. Estimates of the fuel cycle costs of each reactor show that the cost of the extended burnup cycle is ∼35% less than the (Pu-U)O2 cycle.