ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NEI chief executive highlights “unlimited potential” for nuclear in state of the industry address
Korsnick
In the Nuclear Energy Institute’s annual State of the Nuclear Energy Industry report, NEI president and CEO and Maria Korsnick expressed optimism about the nuclear industry and she issued a call to action.
Her address was part of NEI’s Nuclear Energy Policy forum. The forum, being held in Washington, D.C., on May 20 and May 21, brings together industry leaders, policy stakeholders, and clean energy experts to discuss nuclear advocacy. Korsnick’s remarks focused on the private capital flowing into the industry, progress on regulatory reform and new nuclear technology, and how the U.S. is trying to take the lead on the global nuclear stage.
“We are here at an unprecedented time in our industry history,” Korsnick said. “I’m proud to say that the nuclear industry has a future of unlimited potential.”
Shahid Ahmed, A. A. Husseiny
Nuclear Technology | Volume 56 | Number 3 | March 1982 | Pages 507-515
Technical Paper | Fuel Cycle | doi.org/10.13182/NT82-A32909
Articles are hosted by Taylor and Francis Online.
Multi-Attribute Decision Theory is applied to rank 11 alternative routes to nuclear proliferation in order of difficulty in acquiring nuclear weapons by nonnuclear countries. The method is based on reducing the various variables affecting the decision to a single function providing a measure for the proliferation route. The results indicate that the most difficult route to obtain atomic weapons is through nuclear power reactors, specifically the liquid-metal fast breeder reactor, heavy water Canada deuterium uranium reactor, and light water reactors such as boiling water and pressurized water reactors. The easiest routes are supercritical centrifuge isotope separation, laser isotope separation, and research reactor. However, nonnuclear routes available that result in substantial damage to life and property are easier than any nuclear route.