ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Tsutomu Hoshino, Tomonori Shirakawa
Nuclear Technology | Volume 56 | Number 3 | March 1982 | Pages 465-477
Technical Paper | Fission Reactor | doi.org/10.13182/NT82-A32905
Articles are hosted by Taylor and Francis Online.
The three-dimensional boiling water reactor (BWR) core following the daily load was simulated by the use of the processor array for continuum simulation (PACS-32), a newly developed parallel microprocessor system. The PACS system consists of 32 processing units (PUs) (microprocessors) and has a multiinstruction, multidata type architecture, being optimum to the numerical simulation of the partial differential equations. The BWR core model includes the modified two-group finite difference, coarse-mesh model for neu-tronics, steady-state model for thermohydraulics, criticality control by core coolant flow, and the time-dependent solution of iodine-xenon dynamics with constant flux level. The analysis of the parallel processing program revealed that the overhead is independent from the number of PUs and that the efficiency of PUs, i.e., the ratio of effective calculation over total, amounts to 75%, even up to 90% if it is limited to the core part. Simulation was made on the daily load follow for 144 h including the weekend, which took 1.3 central processing unit hours by the PACS system. The PACS system demonstrated a computation speed nearly one-tenth that of the large-scale high-speed general purpose computer, with a 25 times better cost-performance ratio and showed that the system could be used as the practical BWR core simulator with more complicated core models.