ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
Tsutomu Hoshino, Tomonori Shirakawa
Nuclear Technology | Volume 56 | Number 3 | March 1982 | Pages 465-477
Technical Paper | Fission Reactor | doi.org/10.13182/NT82-A32905
Articles are hosted by Taylor and Francis Online.
The three-dimensional boiling water reactor (BWR) core following the daily load was simulated by the use of the processor array for continuum simulation (PACS-32), a newly developed parallel microprocessor system. The PACS system consists of 32 processing units (PUs) (microprocessors) and has a multiinstruction, multidata type architecture, being optimum to the numerical simulation of the partial differential equations. The BWR core model includes the modified two-group finite difference, coarse-mesh model for neu-tronics, steady-state model for thermohydraulics, criticality control by core coolant flow, and the time-dependent solution of iodine-xenon dynamics with constant flux level. The analysis of the parallel processing program revealed that the overhead is independent from the number of PUs and that the efficiency of PUs, i.e., the ratio of effective calculation over total, amounts to 75%, even up to 90% if it is limited to the core part. Simulation was made on the daily load follow for 144 h including the weekend, which took 1.3 central processing unit hours by the PACS system. The PACS system demonstrated a computation speed nearly one-tenth that of the large-scale high-speed general purpose computer, with a 25 times better cost-performance ratio and showed that the system could be used as the practical BWR core simulator with more complicated core models.