ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Deep Isolation asks states to include waste disposal in their nuclear strategy
Nuclear waste disposal technology company Deep Isolation is asking that the National Association of State Energy Officials (NASEO) consider how spent nuclear fuel and radioactive waste will be managed under its strategy for developing advanced nuclear power projects in participating states.
Tsutomu Hoshino, Tomonori Shirakawa
Nuclear Technology | Volume 56 | Number 3 | March 1982 | Pages 465-477
Technical Paper | Fission Reactor | doi.org/10.13182/NT82-A32905
Articles are hosted by Taylor and Francis Online.
The three-dimensional boiling water reactor (BWR) core following the daily load was simulated by the use of the processor array for continuum simulation (PACS-32), a newly developed parallel microprocessor system. The PACS system consists of 32 processing units (PUs) (microprocessors) and has a multiinstruction, multidata type architecture, being optimum to the numerical simulation of the partial differential equations. The BWR core model includes the modified two-group finite difference, coarse-mesh model for neu-tronics, steady-state model for thermohydraulics, criticality control by core coolant flow, and the time-dependent solution of iodine-xenon dynamics with constant flux level. The analysis of the parallel processing program revealed that the overhead is independent from the number of PUs and that the efficiency of PUs, i.e., the ratio of effective calculation over total, amounts to 75%, even up to 90% if it is limited to the core part. Simulation was made on the daily load follow for 144 h including the weekend, which took 1.3 central processing unit hours by the PACS system. The PACS system demonstrated a computation speed nearly one-tenth that of the large-scale high-speed general purpose computer, with a 25 times better cost-performance ratio and showed that the system could be used as the practical BWR core simulator with more complicated core models.