ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
A. De Volpi, C. L. Fink, G. E. Marsh, E. A. Rhodes, G. S. Stanford
Nuclear Technology | Volume 56 | Number 1 | January 1982 | Pages 141-188
Technical Paper | Analyses | doi.org/10.13182/NT82-1
Articles are hosted by Taylor and Francis Online.
For fuel-motion surveillance in Transient Reactor Test Facility experiments, the fast-neutron hodoscope has advanced beyond its initial ability to provide time, location, and velocity data: its quantitative mass results are now routinely used in liquid-metal fast breeder reactor accident projections. (Mass normalization is based on initial fuel inventory.) The material and radiation surroundings of the test section affect hodoscope detectors in intrinsic and instrumental ways that necessitate detailed corrections. Depending on the experiment, count rate compensation with as little as 5% total imprecision is usually desired for dead time, power-level changes, nonlinear response, efficiency, and background. In addition, systematic effects ranging up to 20% may occur, from such causes as self-shielding, self-multiplication, self-attenuation, and flux depression. For one- to seven-pin bundles, the hodoscope has achieved 1-ms time resolution, 0.25-mm lateral- and 5-mm axial-motion displacement detection, and 50-mg single-pin, 350-mg seven-pin mass resolution—not all, however, simultaneously, since resolution and statistical precision are inversely related. The experimental and theoretical foundation for that performance is now well established.