ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Paul Robershotte, Peter Griffith
Nuclear Technology | Volume 56 | Number 1 | January 1982 | Pages 134-140
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT82-A32889
Articles are hosted by Taylor and Francis Online.
Post-critical heat flux heat transfer data for water in downflow have been obtained for the following conditions: mass velocity, 48.8 to 147 kg/s·m2; wall temperature, 538 to 760°C; pressure, 1.3 to 2.6 bars; quality, 4.1 to +5.8%; tube diameter, 1.25 cm; and tube length, 66 cm. At low mass velocity, a frozen equilibrium model predicts the data well. At high mass velocity, droplet-vapor heat transfer is good enough so that a homogeneous equilibrium model predicts the data. Under no circumstances is droplet-wall heat transfer significant. When the vapor is in laminar flow, the heat transfer is particularly poor and the radiant heat transfer becomes a significant fraction of the total.