ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
Paul Robershotte, Peter Griffith
Nuclear Technology | Volume 56 | Number 1 | January 1982 | Pages 134-140
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT82-A32889
Articles are hosted by Taylor and Francis Online.
Post-critical heat flux heat transfer data for water in downflow have been obtained for the following conditions: mass velocity, 48.8 to 147 kg/s·m2; wall temperature, 538 to 760°C; pressure, 1.3 to 2.6 bars; quality, 4.1 to +5.8%; tube diameter, 1.25 cm; and tube length, 66 cm. At low mass velocity, a frozen equilibrium model predicts the data well. At high mass velocity, droplet-vapor heat transfer is good enough so that a homogeneous equilibrium model predicts the data. Under no circumstances is droplet-wall heat transfer significant. When the vapor is in laminar flow, the heat transfer is particularly poor and the radiant heat transfer becomes a significant fraction of the total.