ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
P. J. Fehrenbach, P. A. Morel, R. D. Sage
Nuclear Technology | Volume 56 | Number 1 | January 1982 | Pages 112-119
Technical Paper | Material | doi.org/10.13182/NT82-A32886
Articles are hosted by Taylor and Francis Online.
Measurement of fuel element diameters while the fuel is operating at power, in-reactor, has provided evidence of in-reactor fuel densification and relocation. The design and operation of the in-reactor diameter measuring rig used for these measurements are described. Diameter measurements were obtained from two fresh Zircaloy-clad UO2 elements containing fuel of 10.64 and 10.82 Mg/m3 density, respectively, at linear power outputs up to 61 kW/m. Similar measurements were also obtained from a 10.64 Mg/m3 density element after low power irradiation at 26 kW/m to a burnup of 75 MW- h/kg uranium. Results indicate that higher starting fuel density and prior irradiation both reduce the amount and rate of in-reactor fuel densification observed. Diameter measurements following reactor shutdowns, particularly on the higher burnup element, also indicate that fuel relocation can overcome diameter decreases due to fuel densification and restore pellet-clad interaction.