ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NEI chief executive highlights “unlimited potential” for nuclear in state of the industry address
Korsnick
In the Nuclear Energy Institute’s annual State of the Nuclear Energy Industry report, NEI president and CEO and Maria Korsnick expressed optimism about the nuclear industry and she issued a call to action.
Her address was part of NEI’s Nuclear Energy Policy forum. The forum, being held in Washington, D.C., on May 20 and May 21, brings together industry leaders, policy stakeholders, and clean energy experts to discuss nuclear advocacy. Korsnick’s remarks focused on the private capital flowing into the industry, progress on regulatory reform and new nuclear technology, and how the U.S. is trying to take the lead on the global nuclear stage.
“We are here at an unprecedented time in our industry history,” Korsnick said. “I’m proud to say that the nuclear industry has a future of unlimited potential.”
R. Förthmann
Nuclear Technology | Volume 56 | Number 1 | January 1982 | Pages 81-92
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT82-A32882
Articles are hosted by Taylor and Francis Online.
Four irradiation experiments for testing the efficiency of fission-product-retaining kernel additives in coated fuel particles are described. The evaluation of the obtained experimental data led to the following results: 1. Alumina-silica kernel additives reduce the inpile release of 90Sr and 140Ba from BISO-coated particles at temperatures of ∼1200°C by two orders of magnitude, and the cesium release from kernels by about one order of magnitude. 2. Effective transport coefficients including all parameters that contribute to kernel release for (Th,U)O2 mixed oxide kernels and low-enriched UO2 kernels containing 5 wt% alumina-silica additives are given by the equations: and 3. Alumina-silica kernel additives are ineffective for retaining 110m Ag in coated particles. However, an intact silicon carbide interlayer was also found to be ineffective at temperatures >1200°C. 4. The penetration of fission-product-containing eutectic additive melts into the buffer layer during irradiation can be avoided by using additives that consist of alumina and mullite without an excess of silica. 5. Annealing of LASER-failed irradiated particles and results of the irradiation test FRJ2-P20 indicate that the efficiency of alumina-silica kernel additives is not altered if the coating becomes defective.