ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Andrew Richard Raymond Telford
Nuclear Technology | Volume 56 | Number 1 | January 1982 | Pages 33-39
Technical Paper | Fission Reactor | doi.org/10.13182/NT82-A32878
Articles are hosted by Taylor and Francis Online.
Tests have been carried out on one of the advanced gas-cooled reactors (AGRs) at Hinkley Point to determine the fuel temperature coefficient of reactivity, an important safety-related parameter. Reactor neutron flux was measured during transients induced by movement of a bank of control rods from one steady position to another. An inverse kinetics analysis was applied to the recorded flux transient to determine the reactivity change as the fuel temperature changed, and the variation of mean fuel temperature was derived from the flux transient by a multiplane thermal-hydraulics code representing an AGR fuel channel The fuel temperature coefficient was then obtained from the slope of a plot of core reactivity against fuel temperature. The uncertainty to be applied to the derived temperature coefficient has been shown to be approximately ±10% at the one standard deviation level The experimental technique has been found to be simple to apply on a commercial reactor and has given consistent results over a range of reactor operating conditions. Calculations of fuel temperature coefficients of reactivity (based on the lattice code, ARGOSY) have been carried out and reactor averaged values deduced for comparison with experiment. The calculated and measured coefficients agree to within one standard deviation over a range of core irradiations and power levels.