ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
DOE saves $1.7M transferring robotics from Portsmouth to Oak Ridge
The Department of Energy’s Office of Environmental Management said it has transferred four robotic demolition machines from the department’s Portsmouth Site in Ohio to Oak Ridge, Tenn., saving the office more than $1.7 million by avoiding the purchase of new equipment.
Allan Hedin
Nuclear Technology | Volume 138 | Number 2 | May 2002 | Pages 179-205
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT02-A3287
Articles are hosted by Taylor and Francis Online.
Simple analytic expressions are presented for radionuclide transport from a KBS 3-type repository, where spent nuclear fuel is placed in copper canisters surrounded by bentonite clay and deposited at a depth of 500 m in fractured granitic rock.Dissolution of readily accessible and fuel matrix embedded nuclides, chain decay, and nuclide precipitation is treated within the canister. Transport in the canister void and buffer is modeled with a dual stirred tank analogy, where transport resistances represent an assumed small initial damage in the canister and transport features of the buffer-geosphere interface. Initial, transient diffusion in the buffer is treated with a simple correction term. Chain decay is not included in the buffer.Geosphere transport expressions handle advection, longitudinal dispersion, matrix diffusion, sorption, and radioactive decay, but not chain decay. The treatment is based on earlier results for an instantaneous inlet and for a constant inlet to the geosphere in the nondispersive case. A correction is added so that longitudinal dispersion is taken approximately into account. The correction utilizes analytical expressions for the temporal moments of the geosphere release curve in the dispersive case.The near-field/geosphere integration is treated in a simplified manner avoiding numerical convolutions. The instantaneous inlet expression for the geosphere release is used when the near-field release decreases rapidly in comparison to a typical response time in the geosphere; the constant inlet expression is used in the opposite case.Twenty-seven calculation cases from a safety assessment of a KBS 3 repository using borehole data from three different field investigation sites were repeated with the analytic expressions. The agreement in both near-field and geosphere releases is in general well within an order of magnitude for the variety of long- and short-lived, sorbing, nonsorbing, solubility limited, immediately accessible, and fuel matrix embedded single and ingrowing species dominating the releases and doses in the safety assessment calculations. Also, probabilistic dose calculation results are in good agreement, making the analytic model a versatile complement to the various tools used in long-term safety evaluations of a KBS 3 type of repository in saturated fractured rock.