ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R. E. Williford, D. D. Lanning, C. L. Mohr
Nuclear Technology | Volume 56 | Number 2 | February 1982 | Pages 340-350
Nuclear Fuel | doi.org/10.13182/NT82-A32862
Articles are hosted by Taylor and Francis Online.
An alternate thermal-mechanical behavior model for cracked UO2 pelletized fuel is presented. It is recognized that fuel cracking and relocation cause some of the initial pellet-cladding gap (the “free area”) to be moved into the fuel in the form of cracks. The introduction of this free area into the fuel causes the fuel effective thermal conductivity and effective elastic moduli to be simultaneously reduced to values significantly less than laboratory data for solid pellets. Hooke’s Law and a crack compliance model are used to deduce the effective fuel conductivity and moduli from simultaneous in-reactor measurements of rod power, fuel center temperature, and cladding elongation. The fuel-cladding “gap” is considered as another “crack,” and is also described by the crack compliance model, which predicts that there is always some finite amount of fuel-cladding contact. The primary thermal mechanical feedback mechanism is found to be due to crack closure effects on fuel effective thermal conductivity, rather than gap closure effects on gap conductance.