ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Joanna McFarlane, Jungsook C. Wren, Robert J. Lemire
Nuclear Technology | Volume 138 | Number 2 | May 2002 | Pages 162-178
Technical Paper | Reactor Safety | doi.org/10.13182/NT138-162
Articles are hosted by Taylor and Francis Online.
Iodine species released into a reactor containment building following a loss-of-coolant accident is determined by the relative timing and quantity of iodine and other fission products released from the fuel, chemical thermodynamics in the fuel channel, and reaction kinetics in cooler regions of the heat transport system (HTS). Iodine speciation along the transport path from the fuel to cooler regions of the HTS and into containment is evaluated using chemical thermodynamics calculations, leading to a prediction of the volatile iodine mole fraction that theoretically would enter containment. Sensitivities to a decrease in the cesium-to-iodine ratio, a decrease in iodine concentration in the coolant, and an increase in oxygen partial pressure are tested. The role of the presence of other elements, namely, molybdenum, tellurium, uranium, and lithium, are also evaluated. Under most conditions, the mole fraction of iodine entering containment in volatile form is found to be <0.1%. There are circumstances, however, when cesium iodide can be destabilized by a low cesium-to-molybdenum ratio in an oxidizing atmosphere such as steam. To further explore this situation and to validate the code, chemical equilibrium calculations are also compared to earlier Knudsen-cell experimental studies of the interaction of cesium, iodine, molybdenum, and urania. In these experiments, the partial pressures of cesium molybdate and elemental iodine are measured as a function of temperature over the range 1100 to 1500 K. The calculated Cs2MoO4 vapor pressures agree with the experimental results within an order of magnitude at temperatures up to 1200 K; and between 770 and 1150 K, the agreement is within a factor of 2 to 5 depending on the chemical system.