ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
Barry E. Scheetz, William B. White, Scott D. Atkinson
Nuclear Technology | Volume 56 | Number 2 | February 1982 | Pages 289-296
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT82-A32856
Articles are hosted by Taylor and Francis Online.
Solubility effects were measured on ceramic and single crystal alumina, titania, SrTiO3 (perovskite structure), and ceramic zirconia at 300 and 400°C for times of 7 and 18 days. Selected fluids were deionized water, a high-bicarbonate, high-sulfate simulated connate water (∼1% total dissolved solids), saturated NaCl brine, and a high-magnesium, high-calcium bittern brine. There is measurable dissolution of Al3+ in the connate water and in the bittern brine only. In both cases this can be related to the low pH conditions expected in these fluids at high temperature and to the increase in aluminum solubility with decreasing pH. The SrTiO3 breaks down to some extent in all fluids in the order bittern brine >NaCl >bicarbonate water >deionized water. Dissolution attack on both titanium and zirconium oxides is very small, indicating that the oxides are stable in the pressure-tempera-ture-fluid composition regime. Breakdown of the perovskite phase appears to be by incongruent dissolution with concurrent precipitation of the titanium oxide.