ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
L. H. Johnson, D. W. Shoesmith, G. E. Lunansky, M. G. Bailey, P. R. Tremaine
Nuclear Technology | Volume 56 | Number 2 | February 1982 | Pages 238-253
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT82-A32851
Articles are hosted by Taylor and Francis Online.
An integrated experimental approach to mechanistic studies of the leaching and dissolution of irradiated UO2fuel is described. The program includes an investigation of the solubility of the UO2 matrix under thermodynamically well-defined conditions, detailed measurements of the leaching and dissolution of irradiated fuel under simulated disposal conditions, and electrochemical measurements with a novel UO2 electrode to elucidate dissolution mechanisms. Initial experiments show that the solubility of UO2 under alkaline reducing conditions is relatively insensitive to temperature changes, that the leach rates of irradiated fuel are also not strongly temperature dependent, and that surface films on the UO2 fuel may play an important role in the dissolution process. Several aspects of the UO2 matrix dissolution process are now understood, and the approach taken has indicated where future work is needed.