ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
B. C. Syrett, D. Cubicciotti, R. L. Jones
Nuclear Technology | Volume 55 | Number 3 | December 1981 | Pages 628-641
Technical Paper | Material | doi.org/10.13182/NT81-A32808
Articles are hosted by Taylor and Francis Online.
Four lots of stress-relieved Zircaloy-2 tubing were prepared from a single heat of the alloy. Tube reduction parameters were controlled so that each lot had a different crystallographic texture. The tubing with the most radial (least tangential) basal pole intensity was shown to have a Kearns texture number in the radial direction of 0.61, whereas the equivalent value for the tubing with the least radial texture was 0.48. Each lot of tubing was given one of three surface treatments: etched, etched and grit blasted, or lightly etched and shot blasted. The iodine stress corrosion cracking (SCC) susceptibility of the unirradiated tubing was determined by measuring the time to failure in a standard tube pres-surization test at ~593 K in which 6 mg of iodine was present for each square centimetre of exposed Zircaloy surface. The results showed that texture has a large effect on SCC susceptibility and that surface condition has a significant but lesser effect. The SCC resistance was lowest in the material with the most tangential basal pole intensity and increased as the texture became more radial. The lightly etched and shot-blasted surface resulted in times to failure that were shorter than the times for the other two surface conditions. However, it seems likely that the influence of surface treatment is quite complex and that SCC susceptibility can change significantly with a seemingly minor change in the surface treatment technique. The effect of texture was interpreted in terms of its influence on strength, on deformation characteristics, and on orientation of SCC susceptible planes with respect to the dominant tensile (hoop) stress. The effect of surface condition was interpreted in terms of its influence on residual stresses, on local texture changes, on local stress concentration, and on chemical activity.