ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
B. C. Syrett, D. Cubicciotti, R. L. Jones
Nuclear Technology | Volume 55 | Number 3 | December 1981 | Pages 628-641
Technical Paper | Material | doi.org/10.13182/NT81-A32808
Articles are hosted by Taylor and Francis Online.
Four lots of stress-relieved Zircaloy-2 tubing were prepared from a single heat of the alloy. Tube reduction parameters were controlled so that each lot had a different crystallographic texture. The tubing with the most radial (least tangential) basal pole intensity was shown to have a Kearns texture number in the radial direction of 0.61, whereas the equivalent value for the tubing with the least radial texture was 0.48. Each lot of tubing was given one of three surface treatments: etched, etched and grit blasted, or lightly etched and shot blasted. The iodine stress corrosion cracking (SCC) susceptibility of the unirradiated tubing was determined by measuring the time to failure in a standard tube pres-surization test at ~593 K in which 6 mg of iodine was present for each square centimetre of exposed Zircaloy surface. The results showed that texture has a large effect on SCC susceptibility and that surface condition has a significant but lesser effect. The SCC resistance was lowest in the material with the most tangential basal pole intensity and increased as the texture became more radial. The lightly etched and shot-blasted surface resulted in times to failure that were shorter than the times for the other two surface conditions. However, it seems likely that the influence of surface treatment is quite complex and that SCC susceptibility can change significantly with a seemingly minor change in the surface treatment technique. The effect of texture was interpreted in terms of its influence on strength, on deformation characteristics, and on orientation of SCC susceptible planes with respect to the dominant tensile (hoop) stress. The effect of surface condition was interpreted in terms of its influence on residual stresses, on local texture changes, on local stress concentration, and on chemical activity.