ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
David G. Franklin
Nuclear Technology | Volume 55 | Number 3 | December 1981 | Pages 607-616
Technical Paper | Economic | doi.org/10.13182/NT81-A32806
Articles are hosted by Taylor and Francis Online.
Present limitations of nuclear core materials in light water reactors (LWRs) have severe economic consequences. Estimates of the economic impact of (a) fuel-related power maneuvering restrictions, (b) extending the burnup of fuel, (c) extending the life of boiling water reactor (BWR) control rods, and (d) increasing the exposure limits on BWR fuel channels have been made. The primary basis for these estimates is the actual operating experience of typical LWRs, the data being obtained in a poll in which 88% of the U.S. installed capacity responded. The greatest economic improvements can be obtained by reducing capacity factor losses due to fuel-related maneuvering restrictions (currently costing utilities ∼$170 million per year) and from increases in fuel burnup (an increase to 45 GWd/ton results in a savings of $800 million per year by 1995). The economic impact of increases in the life of BWR control rods and of fuel channels is lower but still significant. An increase in BWR control rod life of 1.6 years (to 8 years total) results in a 1990 savings rate of $41 million per year, while an increase in fuel channel life of 4 years (to 8 years total) results in a 1990 savings rate of $25 million per year.