ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Richard Simms, George S. Stanford, Charles L. Fink, James P. Regis
Nuclear Technology | Volume 55 | Number 3 | December 1981 | Pages 594-600
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT81-A32804
Articles are hosted by Taylor and Francis Online.
The reactivity feedback from fuel relocation is a central issue in the analysis of a loss-of-flow (LOF) accident in a liquid-metal fast breeder reactor (LMFBR). Fuel relocation has been the subject of a number of LOF simulations in the Transient Reactor Test Facility (TREAT). In this study, the results of these tests are analyzed using, as the principal figure of merit, the changes in equivalent fuel worth associated with the fuel motion. The equivalent fuel worth was obtained from the measured axial fuel distributions by weighting the data with a typical LMFBR fuel worth function. At nominal power, the initial fuel relocation resulted in increases in equivalent fuel worth. Above nominal power, the fuel motion was mildly dispersive, but the dispersive driving forces could not unequivocally be identified.