ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
H. Carlsen, D. N. Sah
Nuclear Technology | Volume 55 | Number 3 | December 1981 | Pages 587-593
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT81-A32803
Articles are hosted by Taylor and Francis Online.
The distribution of 239Pu formed in uranium dioxide during irradiation is nonuniform and changes with burnup. This implicates a burnup effect on the fuel temperature distribution. The total 239Pu concentration during irradiation and its radial distribution at end-of-life has been calculated in low-enriched UO2 fuel pellets. The processes considered are 239Pu buildup by capture of thermal and resonance neutrons and 239Pu loss by thermal fissions and neutron capture. The calculated total 239Pu content is verified by chemical analysis, and the calculated 239Pu profile by comparison with results from quantitative alpha autoradiography for two fuel specimens. The effect of a nonuniform radial 239Pu distribution on the fuel temperature profile is evaluated. At a burnup level of 3560 GJ/kg U and a linear heat rating of 50 kW/m, the centerline temperature is calculated to be 245 K lower than that calculated on the assumption that the 239Pu is distributed uniformly.