ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Volker Drüke, Detlef Filges, Rahim Nabbi, Ralf D. Neef, Norbert Paul, Hartwig Schaal
Nuclear Technology | Volume 55 | Number 3 | December 1981 | Pages 549-564
Technical Paper | Fission Reactor | doi.org/10.13182/NT81-A32798
Articles are hosted by Taylor and Francis Online.
Investigation of the initial core poisoning of the pebble bed high temperature reactor has been made by experiments and by checking computations. In following the example of the thorium high-temperature reactor THTR-300, THTR absorber elements poisoned with hafnium-boron were added to the THTR fuel and graphite elements of the KAHTER core. Three different hafnium-boron poisoned core loadings, corresponding to 2.7, 5.3, and 8% reactivity compensation, were used in the experiments. For purposes of comparison, two cores poisoned exclusively with boron were also studied. The poisoning of these cores corresponds to 2.7 and 8% reactivity compensation, respectively. The experiments and checking computations should serve to test the accuracy of the theoretical models and data sets in modeling the reactivity effects of absorber poisoned elements in the THTR. In particular, the applicability of the nuclear data of hafnium and the treatment of resonance calculations should be verified. In addition to determining critical masses and keff, special emphasis was placed in the experiments on the exact determination of all reactivity effects. In some cases, repeated loading of a configuration also provided a measure of the reproducibility of keff. The experiments were checked computationally using the GAMTEREX code package and the program system RSYST. These two computation packages contain different data bases, although the hafnium data are identical, and the computing models differ in certain phases of the calculations. Both code systems compute keff values to within the present accuracy requirements, whereas the program system RSYST gives better agreement with experimental measurements.