ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Wison Luangdilok, Hidetsugu Morota, Michael Epstein
Nuclear Technology | Volume 138 | Number 1 | April 2002 | Pages 44-57
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT02-A3276
Articles are hosted by Taylor and Francis Online.
A model describing the propagation of buoyancy-driven flames and accelerated jet flames in a multicompartment building has been developed for lumped-parameter containment analysis codes. The model mimics the growth of flame fronts as observed from flame visualization experiments at Pisa University and captures the jet ignition phenomena observed in experiments at the Battelle Model Containment. The model establishes a complete scheme of flame propagation consisting of five flame modes, a fireball, a bubble, a prism, a spherical jet, and a planar jet. Through a flame transformation algorithm, flame propagation in a multicompartment system can be described by a birth and rebirth of these flame modes as many times as necessary until burning is complete. The model was implemented into the MAAP4 code. Comparison of the model prediction with Battelle's hydrogen test data (test H5) shows good agreement between the model and the experiment. The model correctly predicts the timing of jet ignition and the magnitude of pressure loads in the downstream compartment. The model was developed for the analysis of hydrogen deflagrations in any compartmentalized building including a reactor containment.