ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
C. V. Parks, P. J. Maudlin
Nuclear Technology | Volume 54 | Number 1 | July 1981 | Pages 38-53
Technical Paper | Fission Reactor | doi.org/10.13182/NT81-A32752
Articles are hosted by Taylor and Francis Online.
A recently proposed sensitivity technique called differential sensitivity theory is applied to the neu-tronic/thermal-hydraulic fast reactor safety code MELT-IIIB. This application centers on the develop ment and solution of the appropriate adjoint and sensitivity equations, resulting in an adjoint version of the MELT code called MELTADJ. Proper inte gration of the forward MELT solution with the corresponding adjoint MELTADJ solution formally yields sensitivity information for all input parameters. Two transients in the Fast Flux Test Facility were investigated by performing input parameter sensi tivity analyses. Sensitivities obtained via MELTADJ are compared with those from MELT recalculations using perturbed input. These investigations indicate sufficiently good agreement between differential sensitivity theory and recalculation to validate the development of MELTADJ.