ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
J. Buongiorno, N. E. Todreas, M. S. Kazimi
Nuclear Technology | Volume 138 | Number 1 | April 2002 | Pages 30-43
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT02-A3275
Articles are hosted by Taylor and Francis Online.
The choice of lead or lead alloys (Pb-Bi) as the coolant of a fast reactor offers the potential for enhanced safety and reliability due to their benign physical and chemical characteristics. In an effort to assess this class of coolants in advanced nuclear systems of the next generation, an innovative fast reactor concept that eliminates the need for steam generators and main coolant pumps and thus offers capital and operating cost reduction was explored. The working steam is generated by direct-contact vaporization of water by liquid metal in the chimney above the core and is then sent directly to the turbine. The presence of a lighter fluid in the chimney substantially enhances the natural circulation of the Pb-Bi within the reactor pool. A key technical issue of this reactor concept is the consequences of Pb-Bi aerosol generation within the vessel, its transport within the power cycle components and impact on the design and operation of the turbine.Generation, transport, and deposition of Pb-Bi aerosols were modeled. It was found that the utilization of a suitable chevron steam separator design reduces the heavy-liquid metal transported to the steam lines by about three orders of magnitude. Nevertheless, the residual Pb-Bi (~0.003 kg/s) is predicted to be sufficient to cause embrittlement of the turbine blades if conventional materials are used and the plant is to operate for 40 yr. Four solutions to this problem were assessed and found potentially viable from a technical standpoint: blade coating, employment of alternative materials, electrostatic precipitation, and oxidation of the Pb-Bi droplets.