ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
T. R. Pinchback, J. R. Winkel, D. K. Matlock, D. L. Olson
Nuclear Technology | Volume 54 | Number 2 | August 1981 | Pages 201-207
Technical Paper | Material | doi.org/10.13182/NT81-A32735
Articles are hosted by Taylor and Francis Online.
The preliminary characterization of liquid rubidium attack on several alloys, which potentially will be used as construction materials for the 85Kr recovery hardware and storage cylinders, is presented. In the temperature range of 773 to 893 K, liquid rubidium attack on unstressed Type 304 stainless steel is shown to result in grain boundary attack and high temperature oxidation. It is shown to form several distinct temperature dependent corrosion layers. In the temperature range of 400 to 627 K, results from both stressed “C” rings and notched tensile tests submerged in liquid rubidium are presented for 6061 aluminum, AISI 4130 steel. Types 304 and 316 stainless steel, Monel 400, and Inconel 600. Monel 400 was identified as having a liquid-metal embrittlement susceptibility at 400 K.