ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
P. A. Tempest
Nuclear Technology | Volume 52 | Number 3 | March 1981 | Pages 415-425
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT81-A32715
Articles are hosted by Taylor and Francis Online.
High-level liquid radioactive waste contains ∼40 different elements and, in time, many of these elements are transformed by radioactive decay into different-sized atoms with new chemical properties. Accommodation of this range of elements in a solid form can be achieved by vitrification because of the geometrical flexibility afforded by unordered glass structures. Crystalline minerals, on the other hand, can only accommodate atoms of specific size and valency and a complex mineral mixture is required to accommodate all the waste elements initially. The detrimental effects of transmutation on a fully crystalline solid raises doubts about the ability of synthetic minerals to immobilize waste elements in a stable structure for a safe period of time. While the vitrification process exploits the metastable (glassy) state, devitrification, if it occurs, introduces an ordering similar to that encountered in crystalline minerals.