ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
P. A. Tempest
Nuclear Technology | Volume 52 | Number 3 | March 1981 | Pages 415-425
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT81-A32715
Articles are hosted by Taylor and Francis Online.
High-level liquid radioactive waste contains ∼40 different elements and, in time, many of these elements are transformed by radioactive decay into different-sized atoms with new chemical properties. Accommodation of this range of elements in a solid form can be achieved by vitrification because of the geometrical flexibility afforded by unordered glass structures. Crystalline minerals, on the other hand, can only accommodate atoms of specific size and valency and a complex mineral mixture is required to accommodate all the waste elements initially. The detrimental effects of transmutation on a fully crystalline solid raises doubts about the ability of synthetic minerals to immobilize waste elements in a stable structure for a safe period of time. While the vitrification process exploits the metastable (glassy) state, devitrification, if it occurs, introduces an ordering similar to that encountered in crystalline minerals.