ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. A. Hassan, K. Rehme
Nuclear Technology | Volume 52 | Number 3 | March 1981 | Pages 401-414
Technical Paper | Fuel Cycle | doi.org/10.13182/NT81-A32714
Articles are hosted by Taylor and Francis Online.
The influence of spacer grids on the heat transfer in gas-cooled rod bundles was determined experimentally for the first time over a wide range of parameters. The experimental investigations were carried out with a smooth and a rough rod bundle for Reynolds numbers between 600 and 2 × 105. The measured range of Reynolds numbers covered the transition from laminar to turbulent, the transition from hydraulically smooth to rough, and fully rough flows. In gas cooling, artificial roughnesses on the rod surfaces are used to disturb the viscous sublayer, which acts as an insulator because of the low thermal conductivity of gases. For this investigation, a two-dimensional rectangular roughness was used, which had an optimum heat transfer characteristic. The blockage factor ∊ was varied between 25 and 35%. These values are typical of flow blockages due to spacer grids in gas-cooled fast reactors. The measurements were carried out from 10 Dh upstream to 33 Dh downstream of the spacer grid. The measured range covered the zone of heat transfer influenced by the spacer grid. The measurements showed heat transfer to be improved by spacer grids in all cases investigated. On the basis of the measurements, empirical correlations could be established for the influence of the spacer grid on heat transfer in terms of the measured parameters, i.e., Reynolds number, blockage factor, and the type of heat transfer surface. These empirical correlations can be directly used in computer codes for analysis of the thermodynamics and fluid dynamics of gas-cooled rod bundles.