ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
M. A. Hassan, K. Rehme
Nuclear Technology | Volume 52 | Number 3 | March 1981 | Pages 401-414
Technical Paper | Fuel Cycle | doi.org/10.13182/NT81-A32714
Articles are hosted by Taylor and Francis Online.
The influence of spacer grids on the heat transfer in gas-cooled rod bundles was determined experimentally for the first time over a wide range of parameters. The experimental investigations were carried out with a smooth and a rough rod bundle for Reynolds numbers between 600 and 2 × 105. The measured range of Reynolds numbers covered the transition from laminar to turbulent, the transition from hydraulically smooth to rough, and fully rough flows. In gas cooling, artificial roughnesses on the rod surfaces are used to disturb the viscous sublayer, which acts as an insulator because of the low thermal conductivity of gases. For this investigation, a two-dimensional rectangular roughness was used, which had an optimum heat transfer characteristic. The blockage factor ∊ was varied between 25 and 35%. These values are typical of flow blockages due to spacer grids in gas-cooled fast reactors. The measurements were carried out from 10 Dh upstream to 33 Dh downstream of the spacer grid. The measured range covered the zone of heat transfer influenced by the spacer grid. The measurements showed heat transfer to be improved by spacer grids in all cases investigated. On the basis of the measurements, empirical correlations could be established for the influence of the spacer grid on heat transfer in terms of the measured parameters, i.e., Reynolds number, blockage factor, and the type of heat transfer surface. These empirical correlations can be directly used in computer codes for analysis of the thermodynamics and fluid dynamics of gas-cooled rod bundles.