ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Longcheng Liu, Ivars Neretnieks
Nuclear Technology | Volume 137 | Number 3 | March 2002 | Pages 228-240
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT02-A3270
Articles are hosted by Taylor and Francis Online.
In this study, we develop a mechanism-based model to take into account most of the important processes that may influence the dissolution behavior of spent fuel and subsequently the release behavior of nuclides within a defective canister in a final repository for high-level nuclear waste. The model is, in essence, a redox-controlled reactive transport model that provides a description of the mass transport of multiple species involved in both local equilibrium and kinetically controlled reactions in the system. The complexity of the kinetics of the various redox reactions involved and the requirement of the long-term prediction, however, make numerical implementation of the fully coupled model computationally inefficient. A series of scoping calculations was performed to highlight the local characteristics and behaviors of the system, and to provide a basis for refinement of the reactive transport model. The results indicate that the rapid buildup of hydrogen within the system is mainly attributed to corrosion of the cast-iron insert that primarily occurs under anaerobic conditions, rather than to radiolysis of water. The system that is rapidly in equilibrium with 50 bar hydrogen would then keep pH constant throughout the system. In addition, simulations suggest that reduction of dissolved hexavalent uranium by ferrous iron adsorbed onto the corrosion products and by dissolved H2 are the most important mechanisms to retard the release of uranium out of the canister. More importantly, it is found that the pseudo stationary state approximation may well be applied to the system. This greatly simplifies the numerical implementation of the reactive transport model.