ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Leonard W. Gray
Nuclear Technology | Volume 52 | Number 1 | January 1981 | Pages 66-72
Technical Paper | Chemical Processing | doi.org/10.13182/NT81-A32690
Articles are hosted by Taylor and Francis Online.
Plutonium metal dissolves readily in sulfamic acid; the dissolution rate is a function of surface area, sulfamic acid concentration, and temperature. Below a temperature of ∼ 50°C, the dissolution mechanism appears to proceed through a PuH2 intermediate that yields a pyrophoric sludge. Above a temperature of ∼60°C, neither the intermediate nor the sludge forms unless the sulfamic acid concentration drops below 0.4 M. Overall dissolution rates of 400 to 500 g Pu/h are obtainable with typical plutonium buttons. Downstream processing requires conversion of the sulfamate to a nitrate medium. Approximately 90% of the residual sulfamate ion can be precipitated as sulfamic acid by the addition of two volumes of 72% HNO3 to one volume of the plutonium sulfamate-sulfamic acid solution if the solution is chilled to -10°C. The small amount of sulfamate remaining can be oxidized either by diluting the nitric acid to ∼3 M and irradiating the solution with ultraviolet light or by diluting the solution with pre-irradiated 3 M HNO3.