ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Fariborz Taghipour, Greg J. Evans
Nuclear Technology | Volume 137 | Number 3 | March 2002 | Pages 181-193
Technical Paper | Reactor Safety | doi.org/10.13182/NT02-A3267
Articles are hosted by Taylor and Francis Online.
The short-term radiological impact of some serious reactor accidents may be governed by the release of airborne radioiodine to the environment. The impacts of parameters affecting iodine volatility, including radiation, iodine concentration, and solution pH, were investigated under a range of postaccident chemical conditions expected in a reactor containment structure. A bench-scale apparatus, installed in the irradiation chamber of a Gammacell, was used to measure the rate of iodine volatilization from dilute, 10-6 to 10-4 M, CsI solutions with pH values from 5 to 9. Iodine volatilization dramatically increased in the presence of radiation. The volatilization rates were nearly proportional to iodine concentration over the range of concentrations and pH values examined. Volatilization rate increased significantly with a decrease in pH. A kinetic-based model containing a mechanistic description of iodine chemistry was developed to simulate the radiation chemistry of iodine. The majority of the model prediction and experimental results of iodine volatilization rates were in agreement, although some divergence was evident.