ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Richard Simms, Stephen M. Gehl, Robert K. Lo, Alan B. Rothman
Nuclear Technology | Volume 52 | Number 2 | February 1981 | Pages 228-245
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT81-A32667
Articles are hosted by Taylor and Francis Online.
Test L5 simulated a hypothetical fast test reactor (FTR) loss-of-flow (LOF) accident using three (Pu,U)O2 fuel elements. The test elements were irradiated at 40 kW/m before Transient Reactor Test Facility Test L5 in the General Electric Test Reactor to 8 at.% burnup. The active fuel column length of the test elements was ∼50 mm shorter than the active length for the FTR. The test elements had a fuel microstructure approximating moderate-power-structure FTR fuel In the LOF accident sequence for the FTR, fuel slumping in the high-power subassemblies causes a power excursion. Test L5 examined the fuel motion for conditions associated with the moderate-power FTR subassemblies in the accident. Dispersals of moderate-power fuel can reduce the accident severity. Data from test vehicle sensors, fuel motion detectors, and a post-test examination were used to reconstruct the sequence of events within the test zone. The test data indicated that a fuel dispersal occurred after reaching a peak power of six-times nominal The fuel motion was apparently driven by the release of fission-product gases entrained in the fuel matrix, since a fuel-vapor-pressure driving force was not significant in this test. The fuel remains showed a range of microstructural changes which were especially useful in inferring the sequence of post-failure events.