ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Richard Simms, Stephen M. Gehl, Robert K. Lo, Alan B. Rothman
Nuclear Technology | Volume 52 | Number 2 | February 1981 | Pages 228-245
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT81-A32667
Articles are hosted by Taylor and Francis Online.
Test L5 simulated a hypothetical fast test reactor (FTR) loss-of-flow (LOF) accident using three (Pu,U)O2 fuel elements. The test elements were irradiated at 40 kW/m before Transient Reactor Test Facility Test L5 in the General Electric Test Reactor to 8 at.% burnup. The active fuel column length of the test elements was ∼50 mm shorter than the active length for the FTR. The test elements had a fuel microstructure approximating moderate-power-structure FTR fuel In the LOF accident sequence for the FTR, fuel slumping in the high-power subassemblies causes a power excursion. Test L5 examined the fuel motion for conditions associated with the moderate-power FTR subassemblies in the accident. Dispersals of moderate-power fuel can reduce the accident severity. Data from test vehicle sensors, fuel motion detectors, and a post-test examination were used to reconstruct the sequence of events within the test zone. The test data indicated that a fuel dispersal occurred after reaching a peak power of six-times nominal The fuel motion was apparently driven by the release of fission-product gases entrained in the fuel matrix, since a fuel-vapor-pressure driving force was not significant in this test. The fuel remains showed a range of microstructural changes which were especially useful in inferring the sequence of post-failure events.