ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
DOE saves $1.7M transferring robotics from Portsmouth to Oak Ridge
The Department of Energy’s Office of Environmental Management said it has transferred four robotic demolition machines from the department’s Portsmouth Site in Ohio to Oak Ridge, Tenn., saving the office more than $1.7 million by avoiding the purchase of new equipment.
Masashi Ueda, Katsuma Tomobe, Keiichi Setoguchi, Akira Endou
Nuclear Technology | Volume 137 | Number 2 | February 2002 | Pages 163-168
Technical Note | Materials | doi.org/10.13182/NT02-A3265
Articles are hosted by Taylor and Francis Online.
The response of a sensor depends on its operating conditions, and thus it is desirable to develop an in-service method for response time estimation. The applicability of the autoregressive (AR) model for this purpose was examined in the case of the fuel subassembly outlet coolant thermocouples and the primary circuit electromagnetic flowmeter (EMF) of Monju, the prototype fast breeder reactor in Japan.The use of an AR model with exogenous input (ARX model) is possible when the physical variable to be sensed can be observed by an alternative means with a faster response time than that of the sensor in question. In the case of the subassembly outlet thermocouple, the temperature output from an eddy-current sensor, during pseudorandom reactor power variation, served as the exogenous input.In respect to the thermocouple response, AR and ARX modeling were shown to be applicable, and the transient responses thus derived agreed well with each other and with the results measured by means of a step change in sodium temperature.However, the primary circuit EMF response time, estimated using the AR model, decreased with increasing flow rate even when approaching the rated flow, demonstrating that the method was not completely applicable. Nevertheless, it can be concluded that the response is faster than that estimated in the rated condition.