ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. Shann, D. R. Olander
Nuclear Technology | Volume 53 | Number 3 | June 1981 | Pages 407-409
Technical Note | Nuclear Fuel Cycle Education Module / Nuclear Fuel | doi.org/10.13182/NT81-A32649
Articles are hosted by Taylor and Francis Online.
A crack-growth model of stress corrosion cracking (SCC) has been successfully applied to predict times-to-failure of Zircaloy specimens exposed to iodine vapor. Data for two types of tests were analyzed using the model The first was a variable loading experiment in which failure occurred after the specimen had been subjected to two distinct stresses in succession. The second was a series of tests in which surface roughness, and probably residual stress as well, was reduced by chemical polishing of the specimens. The success of the crack growth model in dealing with these situations suggests that crack propagation rather than crack initiation is the rate-controlling step in iodine SCC of Zircaloy. Furthermore, the metal in the vicinity of the growing crack is apparently so embrittled by iodine that a model originally intended for ceramics applies.