ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Samuel H. Levine
Nuclear Technology | Volume 53 | Number 3 | June 1981 | Pages 303-325
Technical Paper | Nuclear Fuel Cycle Education Module / Education | doi.org/10.13182/NT81-A32641
Articles are hosted by Taylor and Francis Online.
This educational module utilizes techniques used to calculate the core reactivity, power distribution, and isotopic inventory for the first and subsequent cores of a nuclear power plant to maintain adequate safety margins and operating lifetime for each core. Some reloading schemes studied minimize energy costs. The module is written more for classroom presentation and self-study by students than for the practicing nuclear engineer; however, the first two sections cover in-core fuel management in a way that should be helpful to a utility manager having the purview of core analysis. The major emphasis is on light water reactors, but in-core fuel management for the high temperature gas-cooled reactor and the liquid-metal fast breeder reactor is included. The module involves detailed information on the systematic application of nucleonic codes, e.g., cross-section generating codes and nodal and diffusion theory multigroup codes, to calculate the depletion and reloading of nuclear power reactors. It is not intended to be a reactor physics text, but detailed derivations of formulas, e.g., the B1 approximation in LEOPARD, FLARE recursion formula, used in the relevant nucleonic codes, are given in greater detail than normally found in a text to eliminate the “black box” use of computer codes.