ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Yutaka Kameo, Mikio Nakashima, Takakuni Hirabayashi
Nuclear Technology | Volume 137 | Number 2 | February 2002 | Pages 139-146
Technical Paper | Decontamination/Decommissioning | doi.org/10.13182/NT02-A3263
Articles are hosted by Taylor and Francis Online.
To apply the laser ablation technique for decontamination of metal wastes contaminated with radioactive nuclides, the effect of irradiation atmospheres on removal of oxide layers on steel surfaces by laser ablation was studied. Based on the assumption that the absorption of laser light follows the Lambert-Beer law, ablation parameters, such as absorption length and threshold fluence for ablation, of sintered Fe2O3 and stainless and carbon steels were measured in He, O2, Kr, or SF6 atmospheres. The results indicated that SF6 was the most effective gas of all irradiation atmospheres studied for the exclusive removal of oxide layers formed on stainless and carbon steel samples in high-temperature pressurized water. Secondary ion mass spectroscopic measurement and scanning electron microscopic observation confirmed that no oxide layer existed on the steel samples after the exclusive removal with laser irradiation.