ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
R. K. Hilliard, A. K. Postma
Nuclear Technology | Volume 53 | Number 2 | May 1981 | Pages 163-175
Technical Paper | Realistic Estimates of the Consequences of Nuclear Accident / Nuclear Safety | doi.org/10.13182/NT81-A32621
Articles are hosted by Taylor and Francis Online.
The Containment Systems Experiment (CSE) program is reviewed, with emphasis on the inherent processes that remove fission products from containment atmospheres and reduce their leakage to the environment. The CSE containment vessel was sized to represent a one-fifth linear scale model of a typical 1000-MW(electric) pressurized water reactor. Nineteen tests were performed in a steam-air atmosphere simulating conditions after a loss-of-coolant accident. In eight tests, containment sprays were operated, in five tests a recirculating filter-adsorber loop was operated, and in six tests only natural, passive processes occurred. Sprays were the most effective in removing airborne iodine and particulate aerosols, followed by the filter loop. Although not as effective as the engineered safety features, natural processes of diffusion to surfaces, reaction with paint, gravity settling, and removal in leak paths are shown to be significant. Together they caused a reduction in leakage of 10-2 and 10-3 for iodine and cesium, respectively, during the initial 2-h period. These attenuation factors increased to 10-3 and 10-4, respectively, for the first 24-h period.