ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
D. O. Campbell, A. P. Malinauskas, W. R. Stratton
Nuclear Technology | Volume 53 | Number 2 | May 1981 | Pages 111-119
Technical Paper | Realistic Estimates of the Consequences of Nuclear Accident / Nuclear Safety | doi.org/10.13182/NT81-A32615
Articles are hosted by Taylor and Francis Online.
It is commonly assumed that the chemical form of fission product iodine that escapes from the core of a light water reactor under accident conditions is the elemental form. Experimental evidence is presented that indicates that this assumption is incorrect; instead, a metal iodide (probably cesium iodide) is the chemical form that escapes from the fuel. Moreover, since transport through the primary system necessarily occurs under chemically reducing conditions, a change in valence of the iodine is not possible until the oxidizing conditions characteristic of reactor containment buildings are encountered. However, it is also demonstrated that elemental iodine cannot be a dominant form if, as occurred at the Three Mile Island reactor, the iodide contacts water and is transported into the containment building in aqueous solution.