ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
M. Levenson, F. Rahn
Nuclear Technology | Volume 53 | Number 2 | May 1981 | Pages 99-110
Technical Paper | Realistic Estimates of the Consequences of Nuclear Accident / Nuclear Safety | doi.org/10.13182/NT81-A32614
Articles are hosted by Taylor and Francis Online.
In estimating the real risk to the public from an accident at a nuclear power plant, several quantities are important: the probability and consequence of the accident itself and the risk resulting from any mitigating action taken. The uncertainties of the risk associated with the accident seem to be dominated by the uncertainties of the consequence estimates. The current procedure of using “conservative” assumptions (usually at each stage) in the calculations produces an estimate of the risk that is likely to be much too high (by as much as an order of magnitude or more). In and of themselves, conservative estimates as typically made in the licensing process may in fact contribute additional risk by overestimating source terms and thus overestimating benefits of activities such as evacuation. This process, in turn, leads inadvertently to putting major segments of society at greater risk than is necessary by encouraging decisions that have higher risk. The principal areas of concern focus on the treatment of a number of physical processes. These processes are always operative and can be counted on to limit the consequences of a reactor accident. Sufficient credit is not taken for their ability to reduce the release of radioactivity and confine it relatively close to its source. Estimates of risk will improve in direct proportion to improvements in quantification of these phenomena. Empirical evidence from many sources shows that these processes are indeed operative and very efficient in reducing the release of radioactivity. As a result, the policy decisions based on the source term in the event of a major reactor accident must be reassessed.