ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Gary S. Hoovler, M. Neil Baldwin, Ray L. Eng, Fred G. Welfare
Nuclear Technology | Volume 51 | Number 2 | December 1980 | Pages 217-237
Technical Paper | Argonne National Laboratory Specialists’ Workshop on Basic Research Needs for Nuclear Waste Management / Fuel | doi.org/10.13182/NT80-A32604
Articles are hosted by Taylor and Francis Online.
Close-packed storage of light water reactor (LWR) fuel assemblies is needed to expand the capacity of existing underwater storage pools. This increased capacity is required to store the large volume of spent fuel that arises from prolonged on-site storage. To provide benchmark criticality data in support of this effort, an experimental program sponsored by the U.S. Department of Energy was undertaken. Low-enriched UO2 fuel pins in a water-moderated lattice were used to construct 20 critical assemblies that simulated a variety of close-packed LWR fuel storage configurations. The critical assemblies consisted of nine LWR-type fuel assemblies (clusters) grouped in a radially reflected 3×3 array. Both the spacing and material between the fuel clusters were varied to provide numerous critical configurations. All pertinent data for each critical assembly are documented in sufficient detail to validate calculational methods according to the American National Standards Institute standard N16.9-1975. Criticality calculations using the Monte Carlo code KENO IV were performed for comparison with the experimental data. The comparison shows that the calculational model underestimates keff when separation between fuel clusters is >1 pin pitch (1.64 cm), and that the degree of underestimation increases as the spacing widens.