ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
James V. Beitz, Jan P. Hessler
Nuclear Technology | Volume 51 | Number 2 | December 1980 | Pages 169-177
Technical Paper | Argonne National Laboratory Specialists’ Workshop on Basic Research Needs for Nuclear Waste Management / Fuel Cycle | doi.org/10.13182/NT80-A32597
Articles are hosted by Taylor and Francis Online.
A detailed and predictive understanding of actinide ion transport by groundwater through geological strata has yet to be achieved. New experimental techniques are needed to detect both the oxidation state and the chemical behavior of these ions at very low concentrations. Laser techniques based on the optical properties of actinide ions are evaluated as probes for identification of the oxidation state of a specific ion. A laser-induced fluorescence study of aquo curium 3+ ion is reported. This technique is extremely sensitive but of limited applicability to actinide ions in solution. Thermal lensing spectroscopy, applicable to all actinide ion oxidation states in solution, is being developed. Preliminary results indicate that actinide ion concentrations between 2 and 100 μmol/m3 can be detected in aqueous solution using thermal lensing. The exact detection limit depends on the actinide ion, its oxidation state, and the spectral region used for the investigation. A means of overcoming the sensitivity limitation imposed by the optical absorbance of water itself is discussed.