ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
James V. Beitz, Jan P. Hessler
Nuclear Technology | Volume 51 | Number 2 | December 1980 | Pages 169-177
Technical Paper | Argonne National Laboratory Specialists’ Workshop on Basic Research Needs for Nuclear Waste Management / Fuel Cycle | doi.org/10.13182/NT80-A32597
Articles are hosted by Taylor and Francis Online.
A detailed and predictive understanding of actinide ion transport by groundwater through geological strata has yet to be achieved. New experimental techniques are needed to detect both the oxidation state and the chemical behavior of these ions at very low concentrations. Laser techniques based on the optical properties of actinide ions are evaluated as probes for identification of the oxidation state of a specific ion. A laser-induced fluorescence study of aquo curium 3+ ion is reported. This technique is extremely sensitive but of limited applicability to actinide ions in solution. Thermal lensing spectroscopy, applicable to all actinide ion oxidation states in solution, is being developed. Preliminary results indicate that actinide ion concentrations between 2 and 100 μmol/m3 can be detected in aqueous solution using thermal lensing. The exact detection limit depends on the actinide ion, its oxidation state, and the spectral region used for the investigation. A means of overcoming the sensitivity limitation imposed by the optical absorbance of water itself is discussed.