ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Moving past Sayre’s Law on low-dose radiation
Craig Piercycpiercy@ans.org
So, President Trump has just kicked the low-dose radiation hornets’ nest.
Specifically, his recently signed executive order “Ordering the Reform of the Nuclear Regulatory Commission” calls for the NRC to “reconsider reliance” on the linear no-threshold (LNT) theory and the ALARA (as low as reasonably achievable) standard for radiation protection.
This directive will certainly reignite a vociferous debate within the radiation research community over the continued efficacy of using LNT as the basis for protecting the public and the environment, a community that has been wracked with controversy on this matter for the last few years.
I must admit that whenever the low-dose issue comes up, my first thoughts always go to Sayre’s Law.
Ronald F. Kulak
Nuclear Technology | Volume 51 | Number 3 | December 1980 | Pages 378-387
Technical Paper | Mechanics Applications to Fast Breeder Reactor Safety / Reactor | doi.org/10.13182/NT80-A32574
Articles are hosted by Taylor and Francis Online.
Evaluation of the structural safety of reactors often involves the analysis of various types of fluid-structural components interacting in three-dimensional space. For example, in the design of a pool-type reactor several vital in-tank components such as the primary pumps and the intermediate heat exchangers are contained within the primary tank. Typically, these components are suspended from the deck structure and largely submersed in the sodium pool. Because of this positioning these components are vulnerable to structural damage due to pressure wave propagation in the tank during a hypothetical core disruptive accident. To assess the transient response of these components, it is necessary to perform a dynamic analysis in three-dimensional space that accounts for the fluid-structure coupling. A formulation for a three-dimensional Lagrangian hydrodynamic element was applied to the above safety problem. A model that has many of the salient features of this fluid-structural component system was developed and then analyzed using the NEPTUNE computer code. The primary tank and the in-tank component were modeled as deformable elastoplastic structures, the sodium pool as an inviscid, compressible fluid, while the deck was taken to be rigid and fixed in space. The transient response of the model showed that although the pressure waves loaded the in-tank component so that it moved toward the primary tank, they also loaded the primary tank and moved it away from the component preventing structural damage due to impact between the component and tank.