ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Han Y. Chu
Nuclear Technology | Volume 51 | Number 3 | December 1980 | Pages 363-377
Technical Paper | Mechanics Applications to Fast Breeder Reactor Safety / Reactor | doi.org/10.13182/NT80-A32573
Articles are hosted by Taylor and Francis Online.
An arbitrary Lagrangian-Eulerian method used to describe the fluid motion together with a Lagrangian method used to analyze the structural response for solving fluid-structure interaction problems are presented. A two-dimensional computer code, ALICE, based on these methods is developed for analyzing transient phenomena generated in a reactor-containment system during a hypothetical core disruptive accident. The finite difference equations that are used to approximate the governing equations for the motion of the fluid can be solved with either an explicit or implicit scheme; the finite element equations that are used to approximate the governing equations for the structure can be performed only in the explicit scheme. Thus, the ALICE code can perform two types of coupling calculations for the fluid and structure (explicit-explicit and implicit-explicit). The arbitrary Lagrangian-Eulerian method used to describe the fluid motion allows the vertices of the fluid computing mesh to